Mixed-frequency extreme value regression: Estimating the effect of mesoscale convective systems on extreme rainfall intensity

نویسندگان

چکیده

Understanding and modeling the determinants of extreme hourly rainfall intensity is utmost importance for management flash-flood risk. Increasing evidence shows that mesoscale convective systems (MCS) are principal driver in United States. We use value statistics to investigate relationship between MCS activity Greater St. Louis, an area particularly vulnerable flash floods. Using a block maxima approach with monthly blocks, we find impact on not homogeneous within month/block. To appropriately capture this relationship, develop mixed-frequency regression framework accommodating covariate sampled at frequency higher than observation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating bank default with generalised extreme value regression models

This paper proposes a novel model for the prediction of bank failures, on the basis of both macroeconomic and bank-specific microeconomic factors. As bank failures are rare, in the paper we apply a regression method based on extreme value theory, which turns out to be more effective than classical logistic regression models, as it better leverages the information in the tail of the default dist...

متن کامل

Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems

This study examines the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period. A rainfall event is defined as “extreme” when the 24-h precipitation total at one or more stations surpasses the 50-yr recurrence interval amount for that location. This definition yields 116 such cases from 1999 to 2001 in the area east of the Rocky Mountains, e...

متن کامل

Nonparametric regression and extreme-value analysis

This note summarizes my contributions to the estimation of extreme level curves. This problem is equivalent to estimating quantiles when covariate information is available and when their order converges to one as the sample size increases. Several estimators of these socalled ”extreme conditional quantiles” are developped and the links with boundary or frontier estimation are emphasized. 1 Extr...

متن کامل

Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution

This paper first presents a duration-dependent hypothesis regarding the parameters of the two component extreme value (TCEV) distribution and proposes a simple model to obtain the rainfall depthduration relationship both at ungauged sites and at short record gauged sites in the Sicilian region. Then, by using the annual maximum peak flood and the annual maximum mean daily discharge recorded in ...

متن کامل

Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory

A framework is introduced allowing to apply nonparametric quantile regression to Value at Risk (VaR) prediction at any probability level of interest. A monotonized double kernel local linear estimator is used to estimate moderate (1%) conditional quantiles of index return distributions. For extreme (0.1%) quantiles, nonparametric quantile regression is combined with extreme value theory. The ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Statistics

سال: 2023

ISSN: ['1941-7330', '1932-6157']

DOI: https://doi.org/10.1214/22-aoas1675